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We consider skew-product systems on Td × SL(2,R) for Bryuno base flows close to
constant coefficients, depending on a parameter, in any dimension d, and we prove
reducibility for a large measure set of values of the parameter. The proof is based
on a resummation procedure of the formal power series for the conjugation, and uses
techniques of renormalisation group in quantum field theory.
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1. INTRODUCTION

Consider the linear differential equation

ẋ = (λA + ε f (ωt)) x, (1.1)

on SL(2,R), where λ ∈ [a, b] ⊂ R, ε is a small real parameter, ω ∈ Rd is a
vector with rationally independent components, and A, f ∈ sl(2,R), with A is a
constant matrix and f an analytic function periodic in its arguments. We say that
f is quasi-periodic in time t .

Reducibility for (1.1) means the existence of a quasi-periodic change of
variables which takes the system into a system with constant coefficients:

x = B(ωt)y, ẏ = A0 y, (1.2)

with B ∈ SL(2,R) analytic and A0 ∈ sl(2,R) constant. In particular if the solution
y(t) is periodic then the solution x(t) is quasi-periodic, hence bounded for all times.

A special case of (1.1) is the one-dimensional Schrödinger equation with a
weak quasi-periodic potential, or with arbitrary quasi-periodic potential for large
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energy. In the case of the Schrödinger equation indeed an equivalent formulation
of the problem is usually given, where ε is arbitrary and λ is large enough, so
that the results apply to the higher part of the spectrum; here we rephrase the
results in the formulation (1.1). By assuming a suitable non-resonance condition
on the frequency vector ω, reducibility for ε small enough and for a large measure
set of values λ in [a, b] (for which quasi-periodic solutions exist) was proved by
Dinaburg and Sinai, (8) by using KAM techniques; see also ref. 32 for a review.
Weaker non-resonance conditions were shown to be possible by Rüssmann, (33)

then used by Moser and Pöschel (31) to enlarge the set of values λ for which
reducibility can be obtained. Reducibility almost everywhere in λ and for small ε

has been obtained by Eliasson, (10) for ω a Diophantine vector.
A brief survey on the problem of reducibility for skew-product systems

can be found in refs. 12, 13. In particular results similar to those by Eliasson,
– i.e. reducibility almost everywhere for Diophantine frequency vectors, – in
the case of other Lie groups, also not close to constant coefficients, have been
obtained by Krikorian. (25,26) Very recently, Avila and Krikorian(1) proved, by using
renormalisation techniques, that, if ω belongs to a subset of full measure of the
Diophantine vectors in d = 2, for all values of ε and almost everywhere in λ, quasi-
periodic Schrödinger cocycles are either reducible or non-uniformly hyperbolic.

The usual Diophantine condition for ω requires that there exist two positive
constants C0 and τ such that

|ω · ν| > C0 |ν|−τ ∀ν ∈ Zd \ {0}, (1.3)

where |ν| is the �1-norm of ν; the vectors satisfying (1.3) for some C0 > 0 have full
measure if one fixes τ > d − 1. We shall refer to (1.3) as the standard Diophantine
condition, and we shall call Diophantine vectors the vectors satisfying (1.3) for
some C0 > 0 and some τ ≥ d − 1.

Rüssmann’s non-resonance condition is weaker than the usual Diophantine
one. It is expressed in terms of a suitable approximation function, (31,33) and it is
equivalent to Bryuno’s condition. The latter can be formulated by requiring

∞∑

n=0

1

2n
log

1

inf
0<|ν|≤2n

|ω · ν| < ∞, (1.4)

and was originally introduced by Bryuno. (4,5) We shall cal Bryuno vectors the
vectors satisfying (1.4).

Bryuno vectors have been considered in the case of skew products on
SL(2,R) also by Lopes Dias in ref. 30, where a normal form theorem (analo-
gous to Lemma 22 below) is proved with renormalisation group techniques, for
d = 2; moreover, contrary to what we shall do, the non-resonance condition with
the eigenvalues of λA is assumed there to be of Diophantine type. Renormali-
sation group techniques have been also used in ref. 24 for any d, in the case of
Diophantine vectors.
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In this paper we consider Bryuno vectors in any dimension, and, for ε small
enough, we prove reducibility for (1.1) on a large measure set of values of λ. We
can formulate our result as follows.

Theorem 1. Let A ∈ sl(2,R) be a constant matrix with imaginary eigenvalues
and f ∈ sl(2,R) an analytic quasi-periodic function of time. Let ω ∈ Rd be a
Bryuno vector. Then there exists ε0 > 0 and σ > 0 such that for all |ε| < ε0 the
set of values λ ∈ [a, b] for which the system (1.1) is not reducible is of Lebesgue
measure less than const.|ε|σ .

The result is analogous to that of Rüssmann for the Schrödinger equation,
even if formulated more generally in terms of skew products. Though, we note
that the estimates we find for the excluded set are much better than those provided
by standard KAM methods (cf. for instance ref. 25). We shall see along the proof
that the smaller ε, the closer to 1 σ can be chosen.

The main novelty of this paper resides in the techniques, which are completely
different from the standard KAM techniques: they are techniques of renormalisa-
tion group typical of quantum field theory, based on a diagrammatic representation
of the equation in terms of trees. They are inspired to the method introduced in
the pioneering works, (11,15) then developed in refs. 19, 20, 22 for problems which
present technical aspects analogous to the ones of the problem studied here. Trees
for skew-products were already introduced by Iserles and Nørsett, (27,28) but they
used expansions in time, hence not suited for the study of global properties, such
as reducibility and quasi-periodicity.

The proof of Theorem 1 will proceed through the following steps. In Section 2,
we reduce the study of system (1.1) to the study of a system of differential equations
in C2, that we call here the “auxiliary system”, and we see that the property for
x to have det x = 1 can be interpreted as the existence of a suitable first integral
for the new system. Next, in Section 3 we look for a quasi-periodic solution of the
auxiliary system: first, we try for solutions in the form of formal power series in
ε. However, in order to define such series, even order by order, we cannot fix λ.
Instead, we write λ = λ0 + µ, with λ0 in some interval �0, and we see that for fixed
λ0 there exists a formal power series for µ such that the auxiliary system admits a
formal power series solution. Hence the formal series turn out to be well-defined
order by order, but it may be shown that a subseries of the expansion diverges
for all ε �= 0 (see the remarks after Lemma 8). In order to arrive at a convergent
expansion, it is necessary to exploit some delicate cancellations between the tree
values. This allows us to perform a suitable resummation of the formal series
(for a discussion of the method within the standard KAM theory we refer to
refs. 16, 18) and leads to a “renormalised series" defined in terms of a multiscale
decomposition (see (4.4) and subsequent formulae). For that purpose the Bryuno
condition (1.4) is required and quite natural (see (5.13) in the proof of Lemma 13).
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The renormalised series are introduced in Section 4, and in Section 5 are proved
to converge to well-defined functions. The latter are analytic in ε and solve the
differential equation of the auxiliary system, provided λ0 is chosen in a subset �∗

0
of �0. Finally in Section 6 we have to control that the set of values λ ∈ [a, b] for
which the above procedure can be followed coincide with [a, b], up to a small
measure set.

We conclude with two comments.
Given the system (1.1) one could also consider another problem: fix λ and

study for which values of ε (small enough) the system is reducible. This a natural
question if, for instance, instead of the Schrödinger equation, one considers Hill’s
equation, where there is no free parameter other than ε itself. Under suitable
(generic) conditions on the potential (like f11,0 �= 0) the problem is of comparable
difficulty (cf. refs. 29, 36 for Diophantine ω), and reducibility on a large measure
set of values of ε can be proved. But, in general, if no condition at all is assumed
on the potential (besides analyticity), further difficulties arise; cf. refs. 6, 17, 21
for similar situations. In particular in ref. 21 Hill’s equation perturbed with a small
quasi-periodic potential was studied under the standard Diophantine condition,
and reducibility for a Cantor set of values of ε was proved.

More generally one can consider skew-products flows on Td × SL(n,R), for
any n (and any d). In principle our techniques apply also in such a case: of course
the tree formalism becomes more involved. Also, less smooth potentials can be
considered, like in refs. 1, 24, 25, but in the case of Bryuno vectors analyticity is
likely to be the optimal regularity condition on the potential.

2. PRELIMINARY CONSIDERATIONS

Assume λ ∈ [a, b] ⊂ R \ {0}; we shall see later that the condition 0 /∈ [a, b]
can be relaxed (cf. the end of Section 6). Let A ∈ sl(2,R) with imaginary eigen-
values. Possibly renaming a and b we can assume that the eigenvalues be ±i . Let
f : Td → sl(2,R) be real-analytic, ω ∈ Rd a real vector, and ε a real parameter.

Consider the ordinary differential equation

ẋ = (λA + ε f (ωt)) x, (2.1)

on SL(2,R).
We can assume that A be of the form

A =
(

0 1
−1 0

)
, (2.2)

and, through a suitable change of coordinates, we obtain

D := M AM−1 =
(

i 0
0 −i

)
, M = 1

2

(
1 −i
1 i

)
, M−1 =

(
1 1
i −i

)
,

(2.3)
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Then, for z = Mx M−1, we find the equation

ż = (λD + εg(ωt)) z, (2.4)

with g = M f M−1.
Let us introduce some notations. Given a 2 × 2 matrix M , we write

M =
(

M11 M12

M21 M22

)
, (2.5)

and we denote by [A, B] the commutator of the two matrices A and B. For z ∈ C

denote by z∗ the complex conjugate of z. By δi, j we denote the Kronecker delta.
We setZ+ = {n ∈ Z : n ≥ 0} = N ∪ {0}, and for d ∈ N and 0 ∈ Zd , defineZd

∗ =
Zd \ {0}. Given any set A ⊂ R, we denote by meas(A) the Lebesgue measure of
A.

Lemma 1. Let g = M f M−1, with f ∈ sl(2,R) and M given as in (2.3). Then
g ∈ sl(2,C), and one has g11 = g∗

22 and g12 = g∗
21.

Proof. The property for g to be traceless follows from the fact that tr (M f M−1) =
tr f = 0. The relations between the entries of g can be checked by a direct com-
putation:

2g11 = f11 + f22 + i ( f12 − f21) ,

2g12 = f11 − f22 − i ( f12 + f21) , (2.6)

2g21 = f11 − f22 + i ( f12 + f21) ,

2g22 = f11 + f22 − i ( f12 − f21) ,

where all entries fi j are real.

Define

M := {G ∈ SL(2,C) : G11 = G∗
22, G12 = G∗

21},
m := {g ∈ sl(2,C) : g11 = g∗

22, g12 = g∗
21}. (2.7)

It is easy to see that M is a subgroup, and m is the corresponding Lie algebra.

Lemma 2. Consider the equation ż = Sz, with S = S(t) ∈ m and z(0) ∈ M.
Then z(t) ∈ M for all t ∈ R for which the solution is defined.

Proof. Write explicitly the equations for the entries of z:

ż11 = S11z11 + S12z21,

ż12 = S11z12 + S12z22,
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ż21 = S21z11 + S22z21 = S∗
12z11 + S∗

11z21, (2.8)

ż22 = S21z12 + S22z22 = S∗
12z12 + S∗

11z22,

so that, by setting w = (w1, w2), with w1 = z11 − z∗
22 and w2 = z21 − z∗

12, one
obtains ẇ = Sw. If z(0) ∈ M then w(0) = 0, so that w(t) = 0 for all t ∈ R.
Moreover, if δ(t) = det z(t), one finds

δ̇ = (S11 + S∗
11)(z11z22 − z12z21) = (S11 + S∗

11)δ, (2.9)

where S11 + S∗
11 = S11 + S22 = tr S = 0. Hence δ(t) = δ(0) = 1.

Therefore it is not restrictive to consider the differential equation

ẋ = (λA + ε f (ωt)) x, (2.10)

on M, with

A =
(

i 0
0 −i

)
, f ∈ Cω(Td ,m), (2.11)

and this we shall do henceforth. Write λ = λ0 + µ, and set x = B(ωt)y, with y
solution of

ẏ = λ0 Ay, y(0) = 1, (2.12)

that is

y(t) =
(

eiλ0t 0
0 e−iλ0t

)
. (2.13)

Then B = B(ωt) must solve the differential equation

Ḃ + λ0[B, A] = (ε f + µA) B, (2.14)

and one has det B = 1 if det x(0) = 1.
Write

B := 1 + β, β =
(

a b
c d

)
. (2.15)

Then the following result holds.

Lemma 3. With the notations in (2.15) one has a = d∗, b = c∗, and a + d +
ad − bc is constant along the flow. If det B = 1 then

tr β + det β = a + d + (ad − bc) = 0. (2.16)

for all t ∈ R.
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Proof. Since M is a group and y ∈ M, then B ∈ M if x ∈ M. More generally,
det B(ωt) = det B(0), which means that det B = 1 + a + d + ad − bc is constant
along the flow. By requiring det B = 1 gives (2.16).

In terms of β, (2.14) becomes

β̇ + λ0[β, A] = (ε f + µA) (1 + β) , (2.17)

which, written explicitly for the corresponding entries, gives

ȧ = ε f11 + iµ + ε ( f11a + f12c) + iµ a,

ḃ − 2iλ0b = ε f12 + ε ( f11b + f12d) + iµ b, (2.18)

ċ + 2iλ0c = ε f21 + ε ( f21a + f22c) − iµ c,

ḋ = ε f22 − iµ + ε ( f21b + f22d) − iµ d.

If we use that d = a∗ and b = c∗, Eq. (2.18) reduce to two independent equations

ȧ = ε f11 + iµ + ε ( f11a + f12c) + iµ a,

ċ + 2iλ0c = ε f21 + ε ( f21a + f22c) − iµ c,
(2.19)

which is the system the we are going to study.
We can view (2.19) as a system of ordinary differential equations on C2. Such

a system admits a first integral, as the following result shows.

Lemma 4. Given the system (2.19), the function

H = H (a, c) := a + a∗ + (|a|2 − |c|2) (2.20)

is a constant of motion, that is Ḣ = 0.

Proof. Just note that (2.19) is a rewriting of (2.14). Lemma 3 shows that det B is a
constant of motion. In terms of a and c, this means that (2.20) is conserved along
the flow.

3. FORMAL SERIES

For any function F defined on Td set, formally,

F(ψ) =
∑

ν∈Zd

eiν·ψ Fν, (3.1)

where · denotes the standard inner product in Rd . If F is analytic the Fourier
coefficients Fν decay exponentially at infinity. In particular if f ∈ Cω(Td , sl)
there exists two constants F0 and κ0 such that | f j j ′,ν | ≤ F0e−κ0|ν| for j, j ′ = 1, 2.
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Assume that ω ∈ Rd is a Bryuno vector. This means that, by setting αn(ω) =
inf0<|ν|≤2n |ω · ν|, one has

B(ω) :=
∞∑

n=0

1

2n
log

1

αn(ω)
< ∞. (3.2)

In terms of the Fourier coefficients βν , (2.19) gives for ν �= 0

iω · νaν = ε f11,ν + ε ( f11a + f12c)ν + iµ aν,

i (ω · ν + 2λ0) cν = ε f21,ν + ε ( f21a + f22c)ν − iµ cν,
(3.3)

and for ν = 0

0 = ε f11,0 + iµ + ε ( f11a + f12c)0 + iµ a0,

2iλ0 c0 = ε f21,0 + ε ( f21a + f22c)0 − iµ c0.
(3.4)

3.1. Recursive Equations

Assume λ �= 0. We shall see that µ = O(ε), so that the assumption is satisfied
for all λ ∈ [a, b] if ε is small enough and 0 /∈ [a, b]. In fact it would be enough to
require that min{|a|, |b|} be of order |ε|σ ; cf. the end of Section 6.

We can write a formal power series in ε for β, by setting

β = β(ωt) =
∞∑

k=1

εkβ(k)(ωt), β(k)(ψ) =
∑

ν∈Zd

eiν·ψβ(k)
ν . (3.5)

The properties a = d∗ and b = c∗ imply a∗
ν = d−ν and b∗

ν = c−ν . In the same way
f ∈ m yields f ∗

11,ν = f22,−ν , hence f11,ν + f ∗
11,−ν = 0, and f ∗

12,ν = f21,−ν .
If we write also

µ =
∞∑

k=1

εkµ(k), (3.6)

and we insert (3.5) and (3.6) into (3.3) and (3.4) we find

a(1)
ν = −i f11,ν

ω·ν ,

c(1)
ν = −i f21,ν

ω·ν+2λ0
,

(3.7)

for k = 1 and ν �= 0,

µ(1) = i f11,0,

c(1)
0 = − i

2λ0
f21,0,

(3.8)
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for k = 1 and ν = 0,

a(k)
ν = −i

1

ω · ν

(
∑

ν1+ν2=ν

(
f11,ν1 a(k−1)

ν2
+ f12,ν1 c(k−1)

ν2

) + i
∑

k1+k2=k

µ(k1)a(k2)
ν

)
,

c(k)
ν = −i

1

ω · ν + 2λ0

(
∑

ν1+ν2=ν

(
f21,ν1 a(k−1)

ν2
+ f22,ν1 c(k−1)

ν2

) − i
∑

k1+k2=k

µ(k1)c(k2)
ν

)
,

(3.9)

for k ≥ 2 and ν �= 0, and

µ(k) = i

⎛

⎝
∑

ν1+ν2=0

(
f11,ν1 a(k−1)

ν2
+ f12,ν1 c(k−1)

ν2

) + i
∑

k1+k2=k

µ(k1)a(k2)
0

⎞

⎠,

c(k)
0 = − i

2λ0

⎛

⎝
∑

ν1+ν2=0

⎛

⎝ f21,ν1 a(k−1)
ν2

+ f22,ν1 c(k−1)
ν2

⎞

⎠ − i
∑

k1+k2=k

µ(k1)c(k2)
0

⎞

⎠, (3.10)

for k ≥ 2 and ν = 0.

Lemma 5. Let w be a Bryuno vector. For ν �= 0 define n(ν) = {n : 2nn−1 <

|ν| ≤ 2n}. Assume that there exists C1 > 0 such that |ω · ν + 2λ0| > C1αn(ν)(ω)

for all ν = 0. Let µ(k) and c(k)
0 be fixed for all k ≥ 1 according to (3.8) and (3.10).

Then there are formal power series (3.5) and (3.6) for β and µ, respectively,
recursively determined from (3.7) to (3.10), which solve order by order Eq. (2.19).
The constants a(k)

0 can be arbitrarily fixed.

We omit the easy proof, which can be obtained also as a byproduct of the
forthcoming analysis. Therefore, the formal solubility of the Eq. (2.19) requires
that µ(k) and c(k)

0 be fixed to all orders k ≥ 1, while all coefficients a(k)
0 are left

undetermined. We can fix the latter by requiring (2.16).

Lemma 6. If we fix

a(1)
0 = 0 (3.11)

for k = 1, and

a(k)
0 = −1

2

∑

k1+k2=k

∑

ν∈Rd

(
a(k1)

ν a(k2)∗
ν − c(k1)

ν c(k2)∗
ν

)
, (3.12)

for k ≥ 2, then

H (k) := a(k) + a(k)∗ +
∑

k1+k2=k

(
a(k1)a(k2)∗ − c(k1)c(k2)∗) = 0, (3.13)
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Fig. 1. Graph elements representing (a) u(k)
j,0 for j = 1, 2 and µ(k) for j = 3, (b) u(1)

j,ν , ν �= 0, and (c)

u(k)
j,ν . Only in (a) one can have j = 3, otherwise j = 1, 2. For ν = 0 the latter graph reduces to the first

graph, while for k = 1 and ν �= 0 it reduces to the second graph.

for all k ∈ N.

Proof. By Lemma 4 to all orders k ≥ 1 the function H (k) is formally a constant,
so that H (k)

ν = 0 for all k ≥ 1 and all ν �= 0, while H (1)
0 = a(1)

0 + a(1)∗
0 and

H (k)
0 = a(k)

0 + a(k)∗
0 +

∑

k1+k2=k

(
a(k1)a(k2)∗ − c(k1)c(k2)∗)

0 (3.14)

for k ≥ 2 are constants. If we fix a(k)
0 recursively according to (3.11) and (3.12),

then H (k)
0 = 0, so that (3.13) follows.

The recursive Eqs. (3.7)–(3.12) can be graphically represented in terms of
linear trees as follows.

Call u = (u1, u2) = (a, c). Set also u(k)
1,ν = a(k)

ν and u(k)
2,ν = c(k)

ν , and represent

u(k)
j,ν as a line carrying the labels j ∈ {1, 2} and ν ∈ Zd exiting from a bullet

carrying the label k, with k ∈ N. We call k, j, ν the order label, the component
label and the momentum label, respectively. We colour the bullet with white if
ν = 0 and with grey if ν �= 0; in the latter case, for k = 1 we draw the bullet as a
black bullet instead of a grey one; cf. Fig. 1. We call graph elements the graphs
which are drawn this way. We represent also µ(k) by a graph element, by using the
same graph for u(k)

0 except that j = 3, i.e. we set µ(k) = u(k)
3,0.

Then Eq. (3.9) can be represented as shown in Fig. 2, provided we give some
rules in order to associate with the graphs suitable numerical values.

In the two graphs on the right hand side of Fig. 2 there are two lines �1

and �2, with labels ( j�1, ν�1 ) = ( j, ν) and ( j�2, ν�2 ) = ( j2, ν2), respectively. In the
first graph we associate a mode label νv = ν1 ∈ Zd and a node factor Fv =
f j j2,ν1 with the black point v between the two lines. In the second graph we
associate a mode label νv = ν1 = 0, an order label kv = k1 and a node factor

Fig. 2. Graphical representation of (3.9), expressing the coefficient u(k)
j,ν for k ≥ 2, j = 1, 2, and ν �= 0

in terms of the coefficients u(k′)
j ′,ν′ , with k′ < k. In the first graph one has the constraint ν = ν1 + ν2,

while in second graph one has the constraint k = k1 + k2.
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Fv = (−1) j+1iµ(k1)δ j, j2 with the white square v between the two lines. In both
graphs we have the constraint ν = ν1 + ν2, which fixes ν2 = ν in the second graph.
With the line �1 we associate a propagator g�1 , such that g�1 = 1/ iω · ν if j = 1
and g�1 = 1/ i(ω · ν + 2λ0) if j = 2, – note that in both graphs one has ν �= 0.
Finally the line �2 together with the grey bullet which it comes out from forms a
graph element as shown in Fig. 1(c), so that it represents u(k2)

j2,ν2
, with k2 = k − 1

in the first graph and ( j2, ν2) = ( j, ν) in the second one.
To obtain u(k)

j,ν , with ν �= 0, one has to sum over all labels the products of the

propagator g�1 times the node factor Fv times the coefficient u(k2)
j2,ν2

represented by
the graph element attached either to the black point or to the white square, with
the constraint that the labels j, ν, k are kept fixed. The quantity that one obtains
this way is just the right hand side of Eq. (3.9). Of course j = 1 means that the
corresponding graphs represent contributions to a(k)

ν , and j = 2 means that they
represent contributions to c(k)

ν .
Analogously we can represent graphically (3.10) as in Fig. 3. The difference

with respect to Fig. 2 is that now ν = 0, and j ∈ {2, 3}. For j = 3 we obtain a
contribution to µ(k), whereas for j = 2 we have a contribution to c(k)

0 . The quantities
to be associated with the black points, the white bullets, the white squares and the
graph elements are the same as defined in the case of Fig. 2. With the line �1 we
associate a propagator g�1 , such that g�1 = i if j = 3 and g�1 = −i/2λ0 if j = 2.

Finally, also a(k)
0 can be graphically represented from Eq. (3.12) in terms of

the coefficients with lower order; cf. Fig. 4. In such a case, in the graph on the right
hand side, the line �1 which carries the labels ( j�1 , ν�1 ) = (1, 0) has propagator
g�1 = 1/2, and comes out from a white bullet v with two entering lines carrying
labels ( j�2, ν�2 ) = ( j1, ν1) and ( j�3 , ν�3 ) = ( j2, ν2), with the constraints j1 = j2
and ν1 + ν2 = 0. The node factor is Fv = (−1) j .

3.2. Linear Trees

We can iterate the graphical construction given in Figs. 2, 3 and 4 by devel-
oping further the graph elements on the right hand side according to same figures.
At the end we obtain that u(k)

j,ν , ν �= 0, µ(k) and c(k)
0 can all be expressed in terms

of linear trees (or chains), which are constructed as follows.

Fig. 3. Graphical representation of (3.10), expressing the constants µ(k) (if j = 3) and c(k)
0 (if j = 2)

for k ≥ 2 in terms of the coefficients u(k′)
j ′,ν′ , with k′ < k. In the first graph one has the constraint

0 = ν1 + ν2, while in second graph one has the constraint k = k1 + k2.
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Fig. 4. Graphical representation of (3.12), expressing the constant a(k)
0 (hence j = 1) for k ≥ 2 in

terms of the coefficients u(k′)
j ′,ν′ , with k′ < k. One has the constraints 0 = ν1 + ν2, k = k1 + k2, and

j1 = j2 ∈ {1, 2}.

A tree is a collection of points and lines connecting them, such that all lines
are oriented toward a unique point, with the property that only one line enters such
a point. The latter is called the root of the tree, and the line entering the root is
called the root line. By construction any point different from the root has one and
only one line coming out from it, called the exiting line of the point. A linear tree
is a tree such that each point has only one line going into it, called the entering
line of the point, except one which has no entering line at all. The latter is called
the endpoint of the tree. All the points except the root and the endpoint are called
the nodes of the tree.

Denote by V (θ ) and L(θ ) the set of nodes and the set of lines, respectively, in
the tree θ . One has |L(θ )| = |V (θ )| + 1. Sometimes it can be convenient to denote
by P(θ ) the set of nodes plus the endpoint of θ .

We can number the lines and nodes as �1, . . . , �N , and v1, . . . , vN−1, with
N = |L(θ )| ≥ 1, in such a way that �N connects the endpoint vN to the node vN−1

(the first node), each line �k , k = 2, . . . , N − 1, connects the node vk to the node
vk−1, and �1 connects the node v1 (the last node) to the root.

A node v can be either a black point or a white square: in the latter case one
must have νv = 0. The endpoint of the tree can be either a white bullet or a black
bullet: the line � coming out from the endpoint carries a momentum ν� = 0 in
the first case and a momentum ν� �= 0 in the second one. Examples of trees are
depicted in Figs. 5 and 6.

With each node v which is a black point we associate an order label kv = 1
and a mode label νv ∈ Zd , and with each node which is a white square we associate

Fig. 5. An example of tree of order k with 7 nodes and 8 lines, and with an endpoint which is
a black bullet. One has the constraints k = 6 + k1 + k2, ν = ν1 + ν2, ν2 = ν3 + ν4, ν4 = ν5 + ν6,
ν6 = ν7 + ν8, ν8 = ν9 + ν10. The constraint that the lines connected to the white squares carry the
same component and momentum labels has been taken into account explicitly. The order labels of the
black points and of the black bullet are not shown, as they are necessarily 1. Also the mode label of
the black bullet is not shown, as it is necessarily ν10.
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Fig. 6. An example of tree of order k with 4 nodes and 5 lines, and with an endpoint which is
a white bullet. One has the constraints k = 3 + k1 + k2, ν = ν1 + ν2, ν2 = ν3 + ν4, ν4 = ν5 + ν6,
with ν6 = 0. The constraint that the lines connected to the white square carry the same component and
momentum labels has been taken into account explicitly. The order labels of the black points are not
shown, as they are necessarily 1.

an order label kv ∈ N and a mode label νv = 0. If the endpoint v is a black bullet
we associate with it an order label kv = 1 and a mode label νv ∈ Zd , if it is a
white bullet we associate with it an order label kv ∈ N and a mode label νv = 0.
With each line � we associate a component label j� ∈ {1, 2, 3} and a momentum
ν� ∈ Zd . For each node we have the conservation law that the momentum of the
exiting line equals the sum of the mode of the node plus the momentum of the
entering line

As the tree is linear, for each node v there are only one line � = �v which
comes out from it and only one line �′

v which enters it. If v = vk this means
that �v = �k−1 and �′

v = �k . With these notations, the conservation law reads
ν�v

= νv + ν�′
v
.

Once all labels have been assigned, we associate with each node v the node
factor

Fv :=
{

f j�v j�′v ,νv

(
1 − δ j�v ,3

) + f1 j�′v ,νv
δ j�v ,3, v is a black point,

(−1) j�v +1iµ(kv )δνv,0δ j�v , j�′v
, v is a white square,

(3.15)

with the endpoint v the endpoint factor

Fv :=
{

f j�v 1,ν�v
, v is a black bullet,

u(kv)
j�v ,0, v is a white bullet,

(3.16)

and with each line � coming out from a node the propagator

g� :=

⎧
⎪⎪⎨

⎪⎪⎩

−i/ω · ν�, ν� �= 0, j� = 1,

−i/(ω · ν� + 2λ0), ν� �= 0, j� = 2,

−i/2λ0, ν� = 0, j� = 2,

i, ν� = 0, j� = 3,

(3.17)

and with the line � coming out from the endpoint the propagator

g� :=
⎧
⎨

⎩

−i/ω · ν�, ν� �= 0, j� = 1,

−i/(ω · ν� + 2λ0), ν� �= 0, j� = 2,

1, ν� = 0, j� = 1, 2,

(3.18)

The propagators (3.17) and (3.18) are equal as far as ν� �= 0, but they are different
when ν� = 0.
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One has the further constraints that one can have ν� = 0 in (3.17) only if �

is the root line, and j�v
= 3 in (3.15) again only if �v is the root line. In particular

the only lines which can have vanishing momentum are the root line and the line
coming out from the endpoint, and the only line which can have component label
j = 3 is the root line. Finally if |P(θ )| = 1 then the endpoint of θ has to be a black
bullet. Define 0

k, j,ν the set of linear trees with labels j, ν associated with the root
line, and with

∑
v∈V (θ) kv = k.

Lemma 7. Let ω be a Bryuno vector. For ν �= 0 define n(ν) = {n : 2n−1 < |ν| ≤
2n}. Assume that there exists C1 > 0 such that |ω · ν + 2λ0| > C1αn(ν)(ω) for all
ν �= 0. One has

u(k)
j,ν = ∑

θ∈0
k, j,ν

Val(θ ), k ≥ 1, ν �= 0, j = 1, 2,

µ(k) = ∑

θ∈0
k,3,0

Val(θ ), c(k)
0 = ∑

θ∈0
k,2,0

Val(θ ), k ≥ 1,
(3.19)

where the tree value Val(θ ) is given by

Val(θ ) =
(

∏

�∈L(θ)

g�

)(
∏

v∈P(θ)

Fv

)
, (3.20)

with the propagators g� defined by (3.17) and (3.18), and the factors Fv defined
by (3.15) and (3.16). One has µ(k) ∈ R for all k ≥ 1.

Proof. The only non-trivial statement is that µ(k) is real, – the other assertions can
be easily derived from the discussion above (or can be proved by induction on k).

We prove that µ(k) ∈ R by induction. One has µ(1) ∈ R because µ(1) = i f11,0,
and f11,0 is purely imaginary.

If k ≥ 2, for each tree θ ∈ 0
k,3,0 we distinguish three cases: (a) the endpoint

of θ is a black bullet, (b) the endpoint is a white bullet and the line coming out
from it carries a label j = 1, and (c) the endpoint is a white bullet and the line
coming out from it carries a label j = 2.

We discuss first case (a). Given θ we consider the tree τ = τ (θ ) obtained as
follows. First, detach the root line from the last node and attach it to the endpoint,
and change the orientation of all lines; then the last node of θ becomes the endpoint
of τ (graphically it is transformed from a black point into a black bullet) and vice
versa. Second, change the sign of all the mode labels.

Of course we can write µ(k) = ∑
θ∈0

k,3,0
Val(τ (θ )). If we compare τ (θ ) with θ

we see that the propagators are not changed, because the sum of all the mode labels
is zero, i.e.

∑
v∈P(θ) νv = 0. The node factors corresponding to white squares v are

not changed (they remain ±iµ(kv )), while the node factors corresponding to black
points are changed from f j�v j ′

�v
,νv

into f j ′
�v

j�v ,−νv
. The same happens to the endpoint
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factor, which becomes f1 j�v ,−νv
. Recall that one has f ∗

12,−ν = f21,ν , f ∗
21,−ν = f12,ν ,

and f ∗
11,−ν = − f11,ν ; moreover g∗

� = −g�, as it follows from (3.17) and (3.18),
and µ(kv )∗ = µ(kv ) by the inductive assumption.

Then if we compute Val∗(τ ) we obtain Val∗(τ ) = (−1)|L(θ)|(−1)|J (θ)|Val(θ ),
where L(θ ) is the set of lines in θ , and J (θ ) is the set of v ∈ P(θ ) with j�v

= j�′
v

(we
set j ′

�v
= 1 if v is the endpoint), hence including the white squares. It is immediate

to realize that |P(θ ) \ J (θ )| is even, so that |J (θ )| has the same parity as |P(θ )|.
As |P(θ )| = |L(θ )| this yields Val∗(τ ) = Val(θ ).

In case (b) we can write Val(θ ) = Val(θ1) a(k1)
0 for suitable θ1 and k1, with

a(k1)
0 real by (3.12). More precisely θ1 is the tree of order k − k1 obtained from θ by

detaching the graph element representing a(k1)
0 and replacing the first node with an

endpoint. Then we can construct a tree τ1 = τ (θ1), and reason for θ1 as done for θ

in case (a). The same conclusions hold, in particular one finds Val∗(τ1) = Val(θ1).
Finally in case (c) we can write Val(θ ) = Val(θ1) c(k1)

0 for suitable θ1 and k1,

and develop c(k1)
0 in terms of trees (according with a procedure which will be

extensively used in the following), and so on, until we reach a tree which belongs
to case (a) or case (b), up to the fact it can contain lines � with ν� = 0 and
g� = −i/2λ0; see (3.17) and (3.18). Therefore we can reason as in the previous
cases (a) and (b).

By putting together all the cases, at the end we obtain µ(k) = µ(k)∗.

Note that the set 0
k,1,0 does not appear in (3.19). This is necessary as the

map θ → Val(θ ) is not defined for θ ∈ 0
k,1,0; see (3.17). In fact, a(k)

0 cannot be
represented as a sum of values of linear trees, but still we can write for k ≥ 2 (and
setting a(1)

0 = 0)

a(k)
0 = 1

2

∑

k1+k2=k

∑

ν∈Zd

∑

j=1,2

(−1) j
∑

θ1∈0
k1 ,1,ν

′
Val(θ1)

∑

θ2∈0
k2 ,1,ν

′
Val∗(θ2), (3.21)

where ′ means that we must interpret
∑

θ∈0
k,1,0

′
Val(θ ) := a(k)

0 . (3.22)

Hence also a(k)
0 can be expressed in terms of linear trees.

3.3. Nonlinear Trees

Each node represented by a white square can be further expanded in terms
of trees as follows. First replace the white square v with a black point and attach
to the latter a further graph element representing µ(kv ), if kv is the order label of
v (cf. Fig. 5), hence the graph element is expressed in terms of trees according to
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the first graph in Fig. 3. With the new node v, represented by a black point, we
associate a mode label νv = 0 and an order label kv = 0.

In the same way also the endpoints which are drawn as white bullets can
be expanded according to the second graph in Fig. 3 if the exiting line carries
a component label j = 2 and according to the graph in Fig. 4 if the exiting line
carries a component label j = 1.

Of course if we do this, then nonlinear trees appear. Nonlinear trees are
partially ordered sets of points and lines connecting them, and not totally ordered
sets, such as linear trees are. The advantage of this procedure, however, is that at
the end, the trees have only endpoints with order 1 and all the node factors are
quantities fixed (and not to be determined iteratively). The new trees can have also
nodes with two entering lines. If we denote by pv the branching number of the
point v, that is the number of lines entering v, then pv = 1, 2 if v is a node, while
pv = 0 is v is an endpoint.

A node v with pv = 2 has the following properties. Denote by �0 the exiting
line of v, and by �1 and �2 the entering lines of v. Then either (i) j�0 = 1, ν�0 = 0
and j�1 = j�2 , ν�1 = ν�2 , or (ii) j�1 = 3, ν�1 = 0 and j�2 = j�0 , ν�2 = ν�0 �= 0 or
(iii) j�2 = 3, ν�2 = 0 and j�1 = j�0 , ν�1 = ν�0 �= 0. Moreover in case (i) one has to
take the complex conjugate of all propagators, node factors and endpoint factors of
the subtree with root line �2. In all cases kv = 0 and νv = 0, so that the conservation
law is obeyed also in this case; cf. Fig. 7. The corresponding node factor is

Fv :=
{

(1/2)(−1) jδνv,0δ
�
v, pv = 2, case (i),

(1/2)(−1) j+1iδνv,0δ
�
v, pv = 2, cases (ii) and (iii),

(3.23)

where δ�
v recalls the constraints on the labels of the entering and exiting lines of

v, which are detailed above and illustrated in Fig. 8. The factor 1/2 in the second
line of (3.23) aims to avoid overcountings of trees.

The nodes with branching number 1 can be only black points, because there
are no more white squares. Hence (3.15) must be replaced with

Fv := f j�v j�′v ,νv
(1 − δ j�v ,3) + f1 j�′v ,νv

δ j�v ,3, pv = 1, (3.24)

Fig. 7. The quantity µ(kv ) appearing in the node factor associated with v can be expressed according
to (3.10). This can be interpreted graphically by replacing the white square as shown in the figure: the
graph element entering the node v represent µ(kv ), and it can be further developed in terms of trees
according to Fig. 3.
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Fig. 8. Nodes with branching number 2. The corresponding node factors are defined in (3.23). The
entering lines are assumed to come out from other nodes or from endpoints, and the exiting line either
enters another node or is the root line. The label ∗ on the lower entering line of the first graph means
that one has to take the complex conjugate of the value of the subtree with that root line.

which represents the node factor of any node v with pv = 1. The corresponding
order label is kv = 1, always. A line � exiting from a node v can have also ν� = 0
when j� = 2.

All endpoints v have, by construction, kv = 1, and are drawn as bullets
coloured with black if ν�v

�= 0 and coloured with white if ν�v
= 0, in the latter

case one must have j�v
= 2, as a(1)

0 = 0; see (3.11). The endpoint factor of the
endpoint v is given by

Fv := f j�v 1,ν�v
, (3.25)

which replaces (3.16). If v is a white bullet then necessarily j�v
= 2.

Finally, with the new rules, the propagator of any line � is given by

g� :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−i/ω · ν�, ν� �= 0, j� = 1,

−i/(ω · ν� + 2λ0), ν� �= 0, j� = 2,

1, ν� = 0, j� = 1,

−i/2λ0, ν� = 0, j� = 2,

i, ν� = 0, j� = 3,

(3.26)

which replaces both (3.17) and (3.18).
An example of tree with the new rules is given in Fig. 9. The order labels

are not shown, for simplicity (as the are identically 1, except for the nodes with
branching number 2, which have order label 0).

We still denote by V (θ ) and L(θ ) the number of nodes and lines in θ . Define
also E(θ ) the number of endpoints of θ , and set P(θ ) = V (θ ) ∪ E(θ ). Furthermore
call Vp(θ ), p = 1, 2, the set of nodes v ∈ V (θ ) with branching number pv = p,
and L0(θ ) the set of lines � ∈ L(θ ) with ν� = 0 which do not come out from
endpoints. Then one has |L0(θ )| = |V2(θ )|.

We say that two trees are equivalent if they can be transformed into each other
by continuously deforming the lines in such a way that the latter do not cross each
other. Define k, j,ν the set of inequivalent trees with labels j, ν associated with
the root line, and with kθ = ∑

v∈P(θ) kv = |P(θ )| − |V2(θ )| = k. The number of
inequivalent trees in k, j,ν with fixed assignments of the mode labels {νv}v∈P(θ)
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Fig. 9. An example of tree of order k = 7 with 6 nodes, 3 endpoints and 9 lines. All endpoints and
all nodes with branching number 1 have order 1, while the nodes with branching number 2 have order
0 (hence it is useless to write the orders explicitly). In principle the mode labels of the nodes with
branching number 2 and the labels of the lines coming out from the endpoints which are white bullets
could be omitted, as they are uniquely determined. The conservation law for the momenta has been
taken into account explicitly, except for ν2 = ν3 + ν4. One has |V1(θ )| = 4 and |V2(θ )| = |L0(θ )| = 2,
so that kθ = 7.

can be bounded by a constant to the power k: indeed a tree of order k has P(θ ) ≤ 2k,
so that the number of unlabelled trees of order k can be bounded by the number
of random walks with 4k steps, i.e. by 24k , and all labels except the mode labels
assume a finite number of values.

We can summarise the considerations above into the following formal state-
ment.

Lemma 8. Let ω be a Bryuno vector. For ν �= 0 define n(ν) = {n : 2n−1 < |ν| ≤
2n}. Assume that there exists C1 > 0 such that |ω · ν + 2λ0| > C1αn(ν)(ω) for all
ν �= 0. One has

u(k)
j,ν = ∑

θ∈k, j,ν

Val(θ ), k ≥ 1, j = 1, 2,

µ(k) = ∑
θ∈k,3,0

Val(θ ), k ≥ 1,
(3.27)

with the tree value Val(θ ) given by

Val(θ ) =
(

∏

�∈L(θ)

g�

)(
∏

v∈P(θ)

Fv

)
, (3.28)

with the propagators g� given by (3.26), and the factors Fv given by (3.23), (3.24)
and (3.25). One has µ(k) ∈ iR for all k ≥ 1.

Even if (3.28) looks the same as (3.20), the meaning of the symbols is
different.

The formal series (3.27) is well defined, as it is easy to check, but to order k,
in general, we obtain for Val(θ ) bounds growing like k! to some positive powers,
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so that summability is prevented if we try to estimate the series (3.27) by taking
the absolute values of the tree values. To give a meaning to the formal series, we
have to exploit some remarkable cancellations between the tree values. This can be
showed by introducing a suitable resummation criterion of the series, which lead to
a new series in which to any order k each tree value can be bounded proportionally
to a constant to the power k. This will be done next.

4. RENORMALISED SERIES

Consider a tree θ , and suppose that each line � carries a further label n� ∈
Z+ ∪ {−1}, the scale label. We say that a connected set of lines and nodes T ⊂
L(θ ) is a cluster on scale nT if (i) all lines in T have scales no smaller than nT ,
(ii) at least one line in T is on scale nT , and (iii) it is maximal (which means that
the lines connected to T but not belonging to it are on scales less than nT ). If T
contains only one node (and no lines) we set nT = −1, as in the case in which all
lines in T are on scale −1.

If θ is a linear tree then all clusters have only one entering line, while in
nonlinear trees clusters can have any number of entering lines. On the contrary a
cluster, in both linear and nonlinear trees, can have only either zero or one exiting
line. We call external lines of a cluster T the lines which are either entering or
exiting lines for T .

We say that the cluster T is a self-energy cluster if (i) T has only one entering
line and only one exiting line, (ii) the entering line carries the same momentum
and component label as the exiting line, and (iii) no line along the path of lines
connecting the external lines has vanishing momentum.

A self-energy cluster by construction can contain other self-energy clusters.
We say that a self-energy cluster is a renormalised self-energy cluster if it does
not contain any other self-energy clusters. We say that a tree θ is a renormalised
tree if it does not contain any self-energy clusters. Given a self-energy cluster T ,
denote by V (T ), E(T ) and L(T ) the set of nodes, the set of endpoints and the set
of lines, respectively, contained in T , and set P(T ) = V (T ) ∪ E(T ). Call Vp(T )
the set of nodes v ∈ V (T ) with pv = p, and L0(T ) the set of lines � ∈ L(T ) with
ν� = 0 which do not come out from endpoints. Set kT = |P(T )| − |V2(T )|. An
example of self-energy cluster is given in Fig. 10.

Define the self-energy value VT (ω · ν) as

VT (ω · ν) = εkT

(
∏

�∈L(T )

gR
�

)(
∏

v∈P(T )

Fv

)
, (4.1)

with the factors Fv defined as in Section 3 and the renormalised propagators gR
�

still to be defined.
The renormalised self-energy clusters can be of two kinds: those in which

both external lines are attached to the same node, and those in which there is a
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Fig. 10. Example of self-energy cluster. Let T be the set of nodes and lines inside the solid line, i.e.
the set consisting of the line � with momentum −ν1 and of the two nodes v1 and v2, with mode labels
ν1 and −ν1, respectively, connected by such a line. Then T is a self-energy cluster if the scale of the
line � is strictly less than the scales of both the line �2 entering v2 and the line �1 exiting v1, i.e. if
n� < min{n�1 , n�2 }. In such a case �1 and �2 become the external lines of T . The set of nodes and
lines inside the dotted line cannot be a self-energy cluster, even if it is a cluster and ν = ν2, because
the path of lines between the external lines contains a line with vanishing momentum.

nontrivial path of lines connecting the external lines. Those of the first type can
be seen as obtained from the expansion of the white square representing a node of
in a linear tree.

Consider a renormalised self-energy cluster T of the second kind. Call vin and
vout the nodes which the entering line �in and the exiting line �out of T , respectively,
are attached to. Then add a further node v0 and a further line �0 and consider the
set T̃ , with V (T̃ ) = V (T ) ∪ {v0} and L(T̃ ) = L(T ) ∪ {�0}, constructed as follows.
Detach the line �out from vout add attach it to the node v0, and connect the node v0

to the node vout through the line �0 (oriented from vout to v0). Finally detach the
line �in from vin and reattach it to the node v0 (so that pv0 = 2). The last operation
can be performed in two ways (�in can be above or below �0), hence it generates
two renormalised self-energy clusters T ′ and T ′′. We call, shortly, shift operation
the mechanism described above; cf. Fig. 11.

Lemma 9. For each renormalised self-energy cluster T of the second kind there
is one and only one pair of renormalised self-energy clusters T ′ and T ′′ of the first
kind which can be obtained from T through the shift operation.
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Fig. 11. Examples of renormalised self-energy clusters belonging to the same equivalence class: T is
a renormalised self-energy cluster of the second type, while T ′ and T ′′ are renormalised self-energy
clusters of the first kind. The self-energy values of T ′ and T ′′ are equal to each other: in fact the trees
containing such renormalised self-energy clusters can be obtained from each other by permuting the
entering lines of v0. The external lines �in and �out do not belong to the self-energy clusters, and have
been drawn only to help visualising the structure of the self-energy clusters.

Proof. The proof is a simple application of the diagrammatic rules described in
Section 3.

This allows us to introduce a notion of equivalence between renormalised
self-energy clusters. Then we can consider the renormalised self-energy clusters
as triples of equivalent renormalised self-energy clusters {T, T ′, T ′′}.

Assume that ω be a Bryuno vector. Define

C0 =
∞∑

n=0

2n(d−1)αn, αn = αn(ω) := inf
0<|ν|≤2n

|ω · ν|, (4.2)

and set αn = C0γn . If the sum in (4.2) diverges, redefine C0 by writing 2n(d−2)

instead of 2n(d−1) (so that convergence is assured because αn ≤ |ω|2−n(d−1), by
Dirichlet’s theorem, (34)) and replace γn with γn2−n in the following multiscale
decomposition – see the definition of the compact support functions χn after (4.4),
– and in the Diophantine conditions (4.14).

Note that n′ > n implies γn′ ≤ γn , while γn′ < γn implies n′ > n.
Set Zd

∗ = Zd \ {0}, and define

n(ν) = {n ∈ Z+ : 2n−1 < |ν| ≤ 2n} (4.3)



342 Gentile

for all ν ∈ Zd
∗ .

Let ψ(x) a non-decreasing C∞(R) function defined in R, such that

ψ(x) =
{

1 , for |x | ≥ C1 ,

0 , for |x | ≤ C1/2 ,
(4.4)

with the constant C1 ≤ C0 to be defined later. Set also χ (x) := 1 − ψ(x), and
define, for all n ∈ Z+, χn(x) := χ (β−1γ −1

n x) and ψn(x) := ψ(β−1γ −1
n x), with

β = 1/4.
Define

�0(x) =
(

1

2

(
1

x2
+ 1

(x + 2λ0)2

))−1/2

, (4.5)

and, setting M[0]
1 (x) := 0 and M[0]

2 (x) := λ0, define for n ≥ 1 and j = 1, 2

M[≤n]
j (x) =

n∑

p=0

M[p]
j (x),

M[n]
j (x) = χ0(�0(x)), . . . , χn−1(�0(x))M [n]

j (x), (4.6)

M [n]
j (x) = i

2

∞∑

k=1

∑

T ∈Sk, j,n−1

VT (x),

where Sk, j,n is the set of all renormalised self-energy clusters T on scale n with
|P(T )| − |V2(T )| = k and with component label j associated with both external
lines. For n = 0 we interpret M[≤0]

j (x) = M[0]
j (x). One has

min{|x |, |x + 2λ0|} ≤ �0(x) ≤
√

2 min{|x |, |x + 2λ0|}. (4.7)

Then the renormalised propagator is defined as gR
� = g� if ν� = 0 and gR

� =
g[n�]

j�
(ω · ν�) if ν� �= 0, with

g[n]
j (x) = −i

χ0(�0(x)), . . . , χn−1(�0(x))ψn(�0(x))

x + 2M[≤n]
j (x)

, (4.8)

so that we see that g[n](x) �= 0 implies

1

2
βγnC1 ≤ �0(x) ≤ βγn−1C1. (4.9)

We associate a scale label n� also with lines with vanishing momentum, by setting
n� = −1.

Note that M[≤n]
j (x) is defined in terms of propagators on scales n′ < n,

hence in terms of M[n′]
j ′ (x ′), with n′ < n: this means that (4.7) provides a recursive
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definition of M[≤n]
j (x), hence it makes sense. Note also that self-energy clusters

on scale −1 (in particular those consisting of a single node) are not taken into
account in (4.7); this will be motivated by Lemma 10 below.

Define the tree value Val(θ ) as

Val(θ ) =
(

∏

�∈L(θ)

gR
�

)(
∏

v∈P(θ)

Fv

)
. (4.10)

Then, if R
j,k,ν is the set of inequivalent renormalised trees with labels j, ν asso-

ciated with the root line and with |P(θ )| − |V2(θ )| = k, set

u[k]
j,ν =

∑

θ∈R
j,k,ν

Val(θ ), (4.11)

with u[k]
3,0 := µ[k], and define the function u(t) = (u1(t), u2(t)) as

u j (t) =
∞∑

k=1

εku[k]
j (t), u[k]

j (t) =
∑

ν∈Zd

eiν·ωt u[k]
j,ν, (4.12)

and the counterterm µ as

µ =
∞∑

k=1

εkµ[k], (4.13)

that we call the renormalised series for u(t) and µ, respectively.

Lemma 10. The self-energy clusters on scale −1 have values which cancel out
exactly when summed together, hence there is no contributions arising from them
to M[≤n]

j (x).

Proof. The self-energy clusters on scale −1 are those represented in Fig. 12.
Hence they would contribute to M[≤n]

j (x) a value f11,0 + iµ[1] for j = 1 and

f22,0 − iµ[1] for j = 2. By the very definition of µ[1] one has iµ[1] = − f11,0, so
that f11,0 + iµ[1] = 0 for j = 1. For j = 2 one has f22,0 − iµ[1] = f22,0 + f11,0 =
0, where we used that f ∈ m, so that tr f = 0.

For higher values of n, M[n]
1 (x) and M[n]

2 (x) are no longer equal to each

other. However, we shall see that there is a deep symmetry yielding M[n]
1 (0) =

−M[n]
2 (−2λ0) (cf. Lemma 15). Moreover, the cancellation mechanism which leads

to Lemma 10 still works for any n, and implies partial cancellations, as Lemma 16
will show.
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Fig. 12. Self-energy clusters on scale −1 contributing to M[≤n]
j (ω · ν). The external lines do not

belong to the self-energy clusters, and have been drawn only to help visualising the structure of the
self-energy clusters.

Assume the Diophantine conditions

|ω · ν| > C1γn(ν),

|ω · ν ± 2λ0| > C1γn(ν),
(4.14)

for all ν ∈ Zd
∗ and all n ≥ 0. For C1 ≤ C0 the conditions in the first line are

automatically satisfied by definition. The condition in the second line, called the
(first) Melnikov condition, instead, have to be explicitly required with the constant
C1 – the same as in (4.4) – still to be fixed.

Let �0 be the set in which λ0 varies, and call �∗
0 the subset of values λ0 ∈ �0

for which the conditions (4.14) are satisfied. Of course �0 has to be such that for
λ0 ∈ �0 one has λ = λ0 + µ ∈ [a, b], but for the time being we ignore such a
constraint.

5. CONVERGENCE OF THE RENORMALISED SERIES

In this Section we assume that λ0 ∈ �∗
0. Hence the Diophantine conditions

(4.14) are satisfied. We want to study the renormalised series for u and µ, with
the aim of showing first that they converge, so that the functions u and µ are well
defined, second that u solves the Eq. (2.19) provided one fixes µ = µ and both
u and µ are analytic in ε, third that the relative measure of the set �∗

0 is large.
Finally we have to check that the last property implies that the set of values of λ

in [a, b] for which (2.10) is reducible also is of large measure; this will be done in
Section 6.

We note since now that for any renormalised self-energy cluster T one has
|L(T )| = |P(T )| − 1, so that |L(T )| − |L0(T )| = kT − 1. Moreover if T ∈ Sk, j,n ,
with n ≥ 0, then kT ≥ 2, because there must be at least one line on scale n.

In the following by saying that some property holds “for ε small enough” we
mean that there exists a constant ε0 (not necessarily the same in all the statements)
such that (i) ε0C−1

1 � 1, and (ii) for |ε| < ε0 that property is satisfied. Define also

|x + 2ρ0(x)| := min{|x |, |x + 2λ0|}, (5.1)

so that ρ0(x) is either 0 (if x + λ0 ≥ 0) or λ0 (if x + λ0 < 0).
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An important remark is that in the forthcoming Lemmata 11 and 12 the results
hold unchanged if, in (4.9), we replace β with 2β in the upper bound and β with
β/2 in the lower bound. Why this is important will be explained in the proof of
Lemma 16.

Lemma 11. Let θ be a renormalised tree. Call Nn(θ ) the number of lines in L(θ )
on scale n. One has

Nn(θ ) ≤ K 2−n M(θ ), M(θ ) :=
∑

v∈P(θ)

|νv| (5.2)

for a suitable constant K .

Proof. First note that if Nn(θ ) �= 0 then, by (4.9), there exists a line � ∈ L(θ )
such that C1γn−1 > βC1γn−1 ≥ |x + 2ρ0(x)| > C1γn(ν�), hence n(ν�) ≥ n, thence
M(θ ) ≥ |ν�| > 2n−1.

Then we prove by induction that

Nn(θ ) �= 0 =⇒ Nn(θ ) ≤ 22−n M(θ ) − 1. (5.3)

If the root line of θ is not on scale n the bound (5.3) follows by induction. If
the root line � of θ is on scale n consider the lines �1, . . . , �p on scales ≥ n
such that no line along the paths connecting any of them to the root line is
on scale ≥ n. If p ≥ 2 again the bound follows inductively. If p = 1 call θ1

the subtree with root line �1, and call T the set of points and lines between �1

and � (that is which precede � but not �1). Denote by P(T ) the set of points
in T , and define M(T ) := ∑

v∈P(T ) |νv|. Call ν and ν ′ the momenta associated
with � and �1, respectively, and set x = ω · ν and x ′ = ω · ν ′. One has Nn(θ ) =
1 + Nn(θ1), and both |x + 2ρ0(x)| and |x ′ + 2ρ0(x ′)| are less than βC1γn−1, so
that |(x − x ′) + 2(ρ0(x) − ρ0(x ′))| ≤ 2βC1γn−1 < C1γn−1.

If there is (at least) a line �′ with ν�′ = 0 along the path of lines between
the external lines � and �1, then there exist two disjoint sets T1 and T2, with
P(T ) = P(T1) ∪ P(T2) and L(T ) = L(T1) ∪ L(T2) ∪ {�′}, such that both M(T1)
and M(T2) are greater than |ν|. Since � is on scale n one has |ν| > 2n−1, so that
M(T ) ≥ max{M(T1), M(T2)} ≥ 2n−1. If there is no line with zero momentum
between the external lines, then ν �= ν ′, otherwise T would be a renormalised
self-energy cluster. Therefore by the second Diophantine conditions (4.14), one
obtains n(ν − ν ′) ≥ n, so that M(T ) ≥ 2n−1 also in such a case.

Hence, by the inductive hypothesis

Nn(θ ) ≤ 1 + (22−n M(θ1) − 1) ≤ 1 − 22−n M(T )

+(22−n M(θ ) − 1) ≤ 22−n M(θ ) − 1, (5.4)

and the bound (5.3) follows.
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Lemma 12. Let T be a renormalised self-energy cluster. Call Nn(T ) the number
of lines in L(T ) on scale n, with n ≤ nT . One has

Nn(T ) ≤ K 2−n M(T ), M(T ) :=
∑

v∈P(T )

|νv| > 2nT −1, (5.5)

with the same constant K as in (5.2).

Proof. We first prove the bound on M(T ). By construction T must contain at least
a line � on scale nT , so that |x� + 2ρ0(x�)| ≤ βC1γnT −1, with x� = ω · ν�. Write
ν� = ν0

�0
+ σ�ν, where ν is the momentum associated with the entering line of T

and σ� = 0, 1, and set x = ω · ν and x0
� = ω · ν0

�. The entering line of T has scale
strictly larger than nT , so that |x + 2ρ0(x)| ≤ βC1γnT −1. If M(T ) ≤ 2nT −1 then
|ν0

�| ≤ M(T ) ≤ 2nT −1, hence n(ν0
�) ≤ nT − 1, so that |x0

� + 2ρ0(x0
� )| > C1γn(ν0

�) ≥
C1γnT −1, by the Diophantine conditions (4.14). Then one has

C1γnT −1 > |x� + 2ρ0(x�)| + σ�|x + 2ρ0(x)|
≥ ∣∣x0

� + 2(ρ0(x�) − σ�ρ0(x)
∣∣ > C1γnT −1, (5.6)

which leads to a contradiction.
Next we pass to the bound on Nn(T ). Consider a subset G0 of the lines of a

tree θ between two lines �out and �in Set G = G0 ∪ {�in} ∪ {�out}. Let [nin], [nout]
be the scales of the lines �out and �in, respectively, and suppose that nin, nout ≥ n,
while all lines in G0 (if any) have scales n′ ≤ nT − 1. Note that in general G0 is not
even a cluster unless nin, nout ≥ nT . Then we can prove that if Nn(G0) �= 0 then
Nn(G0) ≤ 22−n

∑
v∈P(G0) |νv| − 1, where P(G0) is the set of points preceding �out

and following �in.
If G0 has no lines then the mode ν0 of the (only) node between �out and �in

is such that |ν0| ≥ 2n−1, by the second Diophantine conditions (4.14), and the
statement is true. Hence we proceed inductively on the number of lines in G0. If
no line of G0 on the path P(G) connecting the external lines of G has scale n
then the lines in G0 on scale n (if any) belong to trees with root on P(G), and
the statement follows from the bound (5.3) for trees given in the proof of Lemma
11. If there is a line � ∈ P(G) on scale n, then call G1 and G2 the disjoint subsets
of G such that G1 ∪ G2 ∪ {�} = G. Then G1 ∪ {�} and G2 ∪ {�} have the same
structure of G itself, but each has less lines. Hence, again the inductive assumption
yields the result.

Therefore, as a particular case, by choosing G0 = T , with T ∈ Sk, j,nT −1, the
bound for Nn(G0) implies the bound on Nn(T ) we are looking for.
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Lemma 13. Assume that the propagators g[p]
j (x) can be uniformly bounded for

all 0 ≤ p ≤ n − 1 as
∣∣g[p]

j (x)
∣∣ ≤ K1C−1

1 γ −1
p , (5.7)

for some positive constant K1. Then one has

|VT (ω · ν)| ≤ |ε|kT DkT
1 C−(kT −1)

1 γ −kT
m0

e−κ0 M(T )/2, (5.8)

for a suitable constant D1. If also the derivatives of the propagators are bounded
uniformly as

∣∣∂x g[p]
j (x)

∣∣ ≤ K2C−2
1 γ −3

p , (5.9)

for some positive constant K2, one has also
∣∣∣∣

d

dx
VT (x)|x=ω·ν

∣∣∣∣ ≤ |ε|kT DkT
2 C−kT

1 γ −kT −2
m0

e−κ0 M(T )/2, (5.10)

for a suitable constant D2.

Proof. For any renormalised self-energy cluster T consider the corresponding
self-energy value (4.1). The product of factors Fv can be bounded as

∏

v∈P(T )

Fv ≤ FkT
0

∏

v∈V1(T )∪E(T )

e−κ0|νv |, (5.11)

while the product of propagators can be bounded, for any m0 ∈ N, as

∏

v∈L(T )

gR
� ≤ C−(kT −1)

1 γ −kT
m0

exp

(
K

∞∑

n=m0+1

1

2n
log

1

γn
M(T )

)
, (5.12)

where the first bound (5.5) of Lemma 12 has been used. If we choose m0 such that

K
∞∑

n=m0+1

1

2n
log

1

γn
≤ κ0

12
, (5.13)

then we obtain (5.8). Such m0 exists because ω is a Bryuno vector; cf. (3.2).
Call P(T ) the path of lines � ∈ L(T ) which are between the external lines of

T . Then the derivative of VT (x) can be written as

∂xVT (x) = εkT
∑

�∈P(T )

∂x gR
�

(
∏

�′∈L(T )\�
gR

�′

)(
∏

v∈P(T )

Fv

)
, (5.14)

so that, by reasoning as in the previous case, using the bounds (5.9) and choosing
again m0 as in (5.13), we obtain (5.10).
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Lemma 14. M[≤n]
j |R is real for all n ≥ 0 and j = 1, 2.

Proof. The proof is by induction on n. For n = 0 the assertion is trivially satisfied.
Then assume that it holds for all n′ < n.

Let T be a renormalised self-energy cluster contributing to M[n]
j (x) through

(4.7). Denote by vin and vout the nodes in V (T ) which the entering line �in and the
exiting line �out of T are attached to, respectively. Call P(T ) the set of lines and
nodes between the external lines of T .

Together with T consider also the renormalised self-energy cluster T ′ ob-
tained as follows. Detach the line �in from vin and attach it to the node vout, and
detach the line �out from vout and attach it to the node vin. Consistently, orient
all lines along the path P(T ) between the external lines of T in the opposite
direction, i.e. from vout to vin. Finally change the mode labels of all nodes along
P(T ), i.e. of all nodes v ∈ V (P(T )), if V (P(T )) denotes the set of nodes along
P(T ). The latter operation is possible because of the following reason. Each line
entering a node v ∈ V (P(T )) has zero momentum: indeed for each node v with
branching number pv = 2 one of the three lines connected with v must have zero
momentum (cf. Fig. 8), and by definition of self-energy cluster such a line cannot
lay on P(T ). Hence

∑
v∈V (P(T )) νv = 0. Note also that each line entering a node

v ∈ V (P(T )) is the root line of a tree contributing to µ[kv ], for some kv . Along the
path P(T ) the propagators have not changed because of the operation above (cf.
the analogous discussion in the proof of Lemma 7), by the inductive hypothesis.
The node factors are changed as described in the proof of Lemma 7. As a conse-
quence, when we sum over all possible renormalised self-energy clusters, we find
M[≤n]

j (x) = M[≤n]∗
j (x), which proves the assertion.

Lemma 15. Assume that the propagators g[p]
j (x) and their derivatives can be

uniformly bounded for all 0 ≤ p ≤ n − 1 as in (5.7) and (5.9), for some constants
K1 and K2. Then one has M[n]

1 (0) = −M[n]
2 (−2λ0) for all n ≥ 1.

Proof. Write M [n]
1 (x) according to (4.7). For any T contributing to M [n]

1 (x) we

construct a renormalised self-energy cluster T ′ contributing to M [n]
2 (x) as follows.

Call P(T ) the path of lines and nodes between the external lines of T , and denote
with V (P(T )) and L(P(T )) the set of nodes and the set of lines, respectively,
along P(T ). If L(P(T )) = ∅ the assertion trivially follows from (3.23). Hence in
the following assume L(P(T )) �= ∅.

By definition of self-energy cluster all � ∈ L(P(T )) have momentum different
from zero, while all lines connected to a node v ∈ V (P(T )) have zero momentum
(cf. Fig. 8). Hence

∑
v∈V (P(T )) νv = 0. The nodes v ∈ V (P(T )) are totally ordered,

so that we can number them v0, v1, . . . , vN , if N = |L(P(T ))|. The self-energy
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cluster T ′ is obtained through three steps: (i) first, we associate to each node
vi , i = 0, . . . , N , the mode label and the node factor of the node vN−i in T , –
in other words we revert the order of the nodes, – (ii) next, we write all node
factors f11,νv

and f22,νv
as f11,νv

= − f22,νv
and f22,νv

= − f11,νv
, – by using that

tr f = 0, – (iii) finally we change consistently the component labels j� of the lines
� ∈ L(P(T )), – which means that each label j = 1 is changed into j = 2 and
vice versa.

If � ∈ L(T ) is the line connecting, say, vk to vk−1 for some k = 1, . . . , N ,
we still call � the line in L(T ′) which connects vN−k+1 to vN−k . For each line
� ∈ L(T ) we can write its momentum as ν� = ν0

� + ν, where ν0
� is the sum of the

mode labels of the nodes v ∈ V (P(T )) preceding v in T and ν is the momentum of
the line entering T . Then the corresponding line � in L(T ′) will have momentum
−ν0

� + ν. Therefore each propagator g[n]
j (ω · ν� + ω · ν) in T is changed into

g[n]
3− j (−ω · ν� + ω · ν) in T ′.

From the very definition of the propagators one sees immediately that, by
setting x0

� = ω · ν0
� and x = ω · ν, one has

g[n�]
1

(
x0

�

) = g[n�]
2

(
x0

� − 2λ0
) = −g[n�]

2

( − x0
� − 2λ0

)
,

g[n�]
2

(
x0

�

) = g[n�]
1

(
x0

� + 2λ0
) = −g[n�]

1

( − x0
� − 2λ0

)
.

(5.15)

Now compute Val(T ) for x = 0 and Val(T ′) for x = −2λ0. Of course the
node factors do not depend on the momenta, so that

∏

v∈V (P(T ))

Fv = (−1)|J (P(T ))| ∏

v∈V (P(T ′))

Fv, (5.16)

where J (P(T )) is the set of nodes v ∈ V (P(T )) with j�v
= j�′

v
. It is immediate

to realise that |J (P(T ))| has the same parity of |V (P(T ))|, – see the proof of
Lemma 7 for a similar argument.

By using (5.15) we obtain also

∏

�∈L(P(T ))

gR
�

∣∣∣∣∣
x=0

= (−1)|L(P(T ))| ∏

�∈L(P(T ′))

gR
�

∣∣∣∣∣
x=−2λ0

. (5.17)

Finally we have
(

∏

v∈P(T )\V (P(T ))

Fv

)(
∏

�∈L(T )\L(P(T ))

gR
�

)

=
(

∏

v∈P(T ′)\V (P(T ′))

Fv

)( ∏

�∈L(T ′)\L(P(T ′))

gR
�

)
(5.18)
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for all x ∈ R, so that, by using that (−1)|J (P(T ))|(−1)|L(P(T ))| =
(−1)|V (P(T ))|+|L(P(T ))| = −1, we find VT (0) = −VT ′ (−2λ0). Then the asser-
tion follows.

Lemma 16. Assume that the propagators g[p]
j (x) and their derivatives can be

uniformly bounded for all 0 ≤ p ≤ n − 1 as in (5.7) and (5.9), for some constants
K1 and K2. Then for ε small enough and n ≥ 1 one hasM[n]

1 (0) = M[n]
2 (−2λ0) =

0, and
∣∣M[n]

1 (x)
∣∣ ≤ B1e−κ12n |ε|2 min

{
C−1

1 , |x |C−2
1

}
,

∣∣M[n]
2 (x)

∣∣ ≤ B1e−κ12n |ε|2 min
{
C−1

1 , |x + 2λ0|C−2
1

}
, (5.19)

for suitable n-independent constants B1 and κ1.

Proof. By using the definitions in (4.7) and noting that all sums are controlled, we
see that the bound (5.8) implies the bound |M[n]

j (x)| ≤ B1e−κ12n |ε|2C−1
1 for both

j = 1 and j = 2.
The proof of the other bounds is more subtle. Let us start with the case j = 1.
Let T be a renormalised self-energy cluster. First consider the case

C1γn(M(T )) ≤ 4|ω · ν|, where ν is the momentum associated with the entering
line of T . In that case one can extract from the last product in (5.11) a factor
e−κ0 M(T )/4 ≤ e−κ02n(M(T ))/8. Since ω is a Bryuno number then an := 2−n log 1/αn

tends to zero as n → ∞, hence for ω · ν small enough one has e−κ02n(M(T ))/8 ≤
(C0γn(M(T )))κ0/8an(M(T )) ≤ C0γn(M(T )) ≤ 4C0C−1

1 |ω · ν|, which implies the bound
(5.19).

Then we consider the case C1n(M(T )) > 4|ω · ν|. In that case for any line
� ∈ L(T ) and for any n < n�, by the Diophantine conditions (4.14), one has
|x0

� + 2ρ0(x0
� )| > C1γn(ν0

�), where x� = ω · ν� and x0
� = ω · ν0

�, with ν� = ν0
� + σ 0

� ,

σ� = 0, 1. Since |ν0
�| ≤ M(T ), then C1γn(ν0

�) ≥ C1γn(M(T )) > 4|ω · ν|, which yields

2
∣∣x0

� + 2ρ0
(
x0

�

)∣∣ ≥ |x� + 2ρ0(x�)| ≥ 1

2

∣∣x0
� + 2ρ0

(
x0

�

)∣∣. (5.20)

Such a property is important for the following reason. It can happen, by the prop-
erties of the compact support functions, that a line � is such that g[n�]

j�
(x0

� ) �= 0,

whereas g[n�]
j�

(x0
� + x) = 0. On the other hand in order to exploit the cancellations

describe below we have to consider also renormalised self-energy clusters contain-
ing lines of this kind. Then (5.20) says that in such cases, even if the bounds (4.7)
are not satisfied, one still has bounds of the same form with the only difference
that β is replaced with 2β in the upper bound and with β/2 in the lower bound.
But this is enough to apply both Lemma 11 and Lemma 12.
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For any renormalised self-energy cluster we consider the renormalised self-
energy clusters which belong to the same equivalence class. Assume that T is that
of the second kind and that T ′ and T ′′ are those of the first type. The corresponding
self-energy values differ because of two facts: (i) the value of T ′ and T ′′ has an
extra overall factor −1/2, deriving from the product of the propagator i times the
node factor i/2, and (ii) for all lines along the path between the external lines of T
the propagators depend also on ω · ν. The latter statement means that if � is one of
such lines then gR

� = g[n�]
j�

(ω · ν0
� + ω · ν) for � ∈ L(T ), while gR

� = g[n�]
j�

(ω · ν0
�)

for � ∈ L(T ′) and � ∈ L(T ′′). Finally, the two renormalised self-energy clusters
T ′ and T ′′ have the same values.

Therefore VT ′(ω · ν) = VT ′(0) and VT ′′ (ω · ν) = VT ′′(0) = VT ′(0), hence

VT ′(ω · ν) + VT ′′ (ω · ν) + VT (ω · ν) = VT ′(0) + VT ′′ (0) + VT (0)

+ (VT (ω · ν) − VT (0)) = VT (ω · ν) − VT (0), (5.21)

as VT ′(0) = VT ′′ (0) = −VT (0)/2. By writing

VT (ω · ν) − VT (0) = ω · ν

∫ 1

0
ds

d

dx
VT (x)|x=sω·ν (5.22)

and using (5.10) the bound (5.19) follows once more.
The case j = 2 follows from Lemma 15. Indeed for any renormalised self-

energy cluster T we can write

VT (ω · ν) = VT (−2λ0) + (VT (ω · ν) − VT (−2λ0)) , (5.23)

where

VT (ω · ν) − VT (−2λ0) = (ω · ν + 2λ0)
∫ 1

0
ds

d

dx
VT (x)|x=−2λ0+s(ω·ν+2λ0)

(5.24)
can be bounded by using (5.10), while

i

2

∞∑

k=1

∑

T ∈Sk,2,n−1

VT (−2λ0) = M[n]
2 (−2λ0) = −M[n]

1 (0) = 0, (5.25)

so that the assertion is proved also in such a case.

Lemma 17. Assume that the propagators g[p]
j (x) are differentiable, and that,

together with their derivatives, they can be uniformly bounded for all 0 ≤ p ≤
n − 1 as in (5.7) and (5.9), for suitable constants K1 and K2. Then for ε small
enough M[≤n]

j (x) is differentiable in x, and one has
∣∣M[≤n]

j (x ′) − M[≤n]
j (x) − ∂xM[≤n]

j (x)(x ′ − x)
∣∣ = o

(
ε2C−2

1 |x ′ − x |),
∣∣∂xM[≤n]

j (x)
∣∣ ≤ B2|ε|2C−2

1 , (5.26)
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for a suitable constant B2.

Proof. By writing M[≤n]
j (x) according to (4.7), one finds immediately that the

function is differentiable if the propagators are differentiable, and that the deriva-
tive satisfies the bound in (5.19). The factor ε2 is due to the fact that a self-energy
cluster T depending explicitly on x has at least kT = 2.

Lemma 18. Assume that the propagators g[p]
j (x) and their derivatives can be

uniformly bounded for all 0 ≤ p ≤ n − 1 as in (5.7) and (5.9), for some constants
K1 and K2. Then for ε small enough one has

∣∣x + 2M[≤n]
j (x)

∣∣ ≥ 1

2
�0(x) (5.27)

as far as g[n]
j (x) �= 0.

Proof. By Lemma 16 one has M[≤n]
1 (0) = 0 and M[≤n]

2 (−2λ0) = λ0. Set j(x) = 1
when ρ0(x) = 0 and j(x) = 2 when ρ0(x) = λ0, so that one can write

x + 2M[≤n]
j(x) (x) = x + 2M[≤n]

j(x) (−2ρ0(x)) +
(

2M[≤n]
j(x) (x) − 2M[≤n]

j(x) (−2ρ0(x))
)

= x + 2ρ0(x) + 2
(
M[≤n]

j(x) (x) − M[≤n]
j(x) (−2ρ0)

)
, (5.28)

where |M[≤n]
j(x) (x) − M[≤n]

j(x) (−2ρ0)| ≤ const.|ε|2C−2
1 |x + 2ρ0(x)|, by Lemma 17.

Then by (4.7) one has

∣∣x + 2M[≤n]
j(x) (x)

∣∣≥ (1 − const.|ε|2C−2
1 )|x + 2ρ0(x)|≥ 1 − const.|ε|2C−2

1√
2

�0(x).

(5.29)
Since |x + 2M[≤n]

3− j(x)(x)| ≥ (1 − const.|ε|2C−2
1 )|x + 2M[≤n]

j(x) (x)|, the bound
follows.

Lemma 19. The propagators g[n]
j (x) satisfy the bounds (5.7) and (5.9) for all

n ≥ 0.

Proof. The proof can be performed by induction. For n = 1 the bounds (5.7)
and (5.9) are trivially satisfied, as M[0]

1 (x) = 0 and M[0]
2 (x) = λ0, because of the

Diophantine conditions (4.14).
The difference for n > 1 is that now the propagators depend also on the

functionsM[p]
j (x), p < n, appearing in the denominators and the compact support

functions. Then assume (5.7) and (5.9) for all p < n. Then one has |g[n]
j (x)| ≤
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const.ψn(�0(x))/�0(x) ≤ const.C−1
1 γ −1

n , by Lemma 18. Moreover

∂x g[n]
j (x) = −i

n−1∑

p=0

χ0(�0(x)) . . . ∂χp(�0(x)), . . . ,

χn−1(�0(x))ψn(�0(x))
∂x�0(x)

x + 2M[≤n]
j (x)

− iχ0(�0(x)) . . . χn−1(�0(x))∂ψn(�0(x))
∂x�0(x)

x + 2M[≤n]
j (x)

+ iχ0(�0(x)) . . . χn−1(�0(x))ψn

(
�[n](x)

) 1 + 2∂xM[≤n]
j (x)

(x + 2M[≤n]
j (x))2

,

(5.30)

where ∂ denotes derivative with respect to the argument.
One checks immediately that for all p ≥ 0

∂χp(x) ≤ const.C−1
1 γ −1

p , ∂ψp(x) ≤ const.C−1
1 γ −1

p , ∂x�0(x) ≤ const.,
(5.31)

so that the derivative ∂xM[≤n]
j (x) can be bounded through (5.26), because of the

inductive hypothesis.
Hence, by using once more (4.9) and Lemma 18 to bound the denominators,

we obtain from (5.30)

∣∣∂x g[n′]
j (x)

∣∣ ≤ const.C−2
1

⎛

⎝
n−1∑

p=0

γ −1
p γ −1

n + γ −1
n γ −1

n + γ −2
n

⎞

⎠ ≤ const.C−2
1 γ −3

n ,

(5.32)
which proves the assertion.

Lemma 20. Let λ ∈ �∗
0. There exists ε0 > 0 such that for |ε| < ε0 the coefficients

u[k]
j,ν , j = 1, 2, and µ[k] are bounded by

∣∣u[k]
j,ν

∣∣ ≤ B e−κ|ν||ε|k, ∣∣µ[k]
∣∣ ≤ B |ε|k, (5.33)

for suitable k-independent constants B and κ . One can take ε0 = O(C1γm0 ), with
m0 depending on κ0.

Proof. For any tree θ ∈ R
k, j,ν the value Val(θ ) can be bounded by using the

bounds (5.11) for the factors Fv and the bounds (5.7), proved in Lemma 19,
for the propagators. Summation over the Fourier labels can be performed by
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using an exponential decay factor e−κ0 M(T )/4 which can be extracted from (5.11).
Summation over the other labels and over the number of unlabelled trees can be
easily bounded as a constant to the power k.

Lemma 21. The function u(t) solves (3.3) for all ν �= 0, provided µ = µ.

Proof. We write

u j (t) = u j,0 +
∑

ν∈Zd

eiω·νu j,ν, u j,ν =
∞∑

n=0

u j,ν,n,

u j,ν,n =
∞∑

k=1

εk
∑

θ∈R
k, j,ν,n

Val(θ ), (5.34)

where R
k, j,ν,n is the set of trees in R

k, j,ν with root line on scale n.
An important property of the compact support functions is that

1 =
∞∑

n=0

�n(x), �n(x) := χ0(�0(x)) . . . χn−1(�0(x))ψn(�0(x)), (5.35)

where the summand for n = 0 is meant as ψ0(�0(x)). More generally one has for
all s ≥ 1

1 =
∞∑

n=p

�p,n(x), �p,n(x) := χp(�0(x)) . . . χn−1(�0(x))ψn(�0(x)), (5.36)

where again the summand for n = p is meant as ψp(�0(x)).
We can rewrite the Eq. (3.3) as

u j,ν = g j (x)� j,ν(u), � j = ε f j1 + iµ + ε f j1u1 + ε f j2u2 + (−1) j+1iµu j ,

(5.37)
where x = ω · ν, g j (x) = −i(x + 2M[0]

j (x))−1, withM[0]
1 (x) = 0 andM[0]

2 (x) =
λ0.

By using (5.35) we can write

g j (x)� j,ν(u) = g j (x)
∞∑

n=0

�n(x)� j,ν(u)

= g j (x)
∞∑

n=0

�n(x)
(

g[n]
j (x)

)−1 (
g[n]

j (x)� j,ν(u)
)

, (5.38)
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where �n(x)(g[n]
j (x))−1 = i(x + 2M[≤n]

j (x)), and

g[n]
j (x)� j,ν(u) =

∞∑

k=1

εk
∑

θ∈
R
k, j,ν,n

Val(θ ), (5.39)

where 
R
k, j,ν,n differs from R

k, j,ν,n as it contains also trees which can have one
renormalised self-energy cluster T with exiting line given by the root line of θ . In
such a case if p is the line of the entering line of T , then p ≥ 0 and the scale nT

of T is such that nT + 1 ≤ min{n, p}, by definition of cluster.
Then we have

∞∑

n=0

�n(x)
(

g[n]
j (x)

)−1 (
g[n]

j (x)� j,ν(u)
)

= i
∞∑

n=0

(
x + 2M[≤n]

j (x)
) ∞∑

k=1

εk
∑

θ∈R
k, j,ν,n

Val(θ )

−2i
∞∑

n=1

�n(x)
∞∑

p=n

n∑

s=1

M [s]
j (x)

∞∑

k=1

εk
∑

θ∈R
k, j,ν,p

Val(θ )

−2i
∞∑

n=2

�n(x)
n−1∑

p=1

p∑

s=1

M [s]
j (x)

∞∑

k=1

εk
∑

θ∈R
k, j,ν,p

Val(θ ), (5.40)

and we can use the definitions (5.34) to write
∞∑

k=1

εk
∑

θ∈R
k, j,ν,n

Val(θ ) = u j,ν,n,

∞∑

k=1

εk
∑

θ∈R
k, j,ν,p

Val(θ ) = u j,ν,p, (5.41)

in the second line and, respectively, in the third and fourth lines.
Then the sum of the third and fourth lines in (5.40) gives

−2i

⎛

⎝
∞∑

n=1

�n(x)
∞∑

p=n

n∑

s=1

M [s]
j (x) u j,ν,p +

∞∑

n=2

�n(x)
n−1∑

p=1

p∑

s=1

M [s]
j (x) u j,ν,p

⎞

⎠

= −2i
∞∑

p=1

u j,ν,p

⎛

⎝
p∑

s=1

p∑

n=s

M [s]
j (x)�n(x) +

p∑

s=1

∞∑

n=p+1

M [s]
j (x)�n(x)

⎞

⎠

= −2i
∞∑

p=1

u j,ν,p

p∑

s=1

M [s]
j (x)

∞∑

n=s

�n(x). (5.42)
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If we define

�n(x) := χ0(�0(x)) . . . χn−1(�0(x))χn(�0(x)), (5.43)

then in (5.42) we can write
∞∑

n=s

�n(x) = �s−1(x)
∞∑

q=s

�s,q = �s−1(x), (5.44)

where the property (5.36) has been used. Hence in (5.42) we have
p∑

s=1

M [s]
j (x)

∞∑

n=s

�n(x) =
p∑

s=1

M [s]
j (x)�s−1(x) = M[≤p]

j (x) − M[0]
j (x),

(5.45)

where the factor M[0]
j (x) has been subtracted as the sum over s starts from s = 1

and not from s = 0.
If we insert (5.40) into (5.38), by taking into account (5.42) and (5.45), we

obtain

g j (x)� j,ν(u) = g j (x)

(
i

∞∑

n=0

(
x + 2M[≤n]

j (x)
)

−2i
∞∑

n=1

(
M[≤n]

j (x) − M[0]
j (x)

)
)

u j,ν,n

= g j (x)
∞∑

n=0

i
(
x + 2M[0]

j (x)
)
u j,ν,n =

∞∑

n=0

u j,ν,n = u j,ν,

(5.46)

so that (5.37) is satisfied for u = u.

Lemma 22. The function u(t) solves the system of differential Eq. (2.19) for
all t ∈ R, provided µ = µ. Moreover the function H defined in (2.20) satisfies
H (u(t)) = 0 for all t ∈ R. Both u(t) and µ are analytic in ε.

Proof. Because of Lemma 21, to show that u(t) is a solution it is enough to prove
that u solves (3.4), that is 0 = � j,0(u), with � j (u) defined in (5.33). But this is
obvious by construction.

The claim on H (u(t)) follows if the solution is in M, so that (2.16) is satisfied.
But again this follows from the construction of the solution.

Finally the statement about analyticity easily follows from the construction
of the renormalised series. The series defining u(t) in (4.12) and µ in (4.11) can
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be viewed as power series in ε with coefficients depending on ε. The coefficients
depend on ε through the propagators, and in fact are analytic in ε (for ε small
enough). Hence the series themselves define functions which are analytic in ε.

A result analogous to Lemma 22, in particular analyticity of the conjugation
and of the counterterm, was proved by using renormalisation group techniques in
refs. 24, 30. In the case of the Schrödinger equation it was also obtained in ref. 3,
with techniques similar to those used in this paper; cf. also refs. 2, 9, 14, 23 for
related issues. See also ref. 16, Chapter 9, for resummed series defining analytic
functions, in the context of maximal KAM tori.

6. REDUCIBILITY ON A LARGE MEASURE SET

So far we have proved that, as far as λ0 ∈ �∗
0, the function u(t) solves (2.19).

We still have to prove that the relative measure of �∗
0 with respect to �0 is large,

and we have to see what this means for the parameter λ ∈ [a, b]. We shall find
that the subset �∗ ⊂ [a, b] of values λ for which the construction envisaged in
the previous sections works is of large measure; this will complete the proof of
Theorem 1.

As a consequence of Lemma 19, we have that (5.19), (5.26), and (5.27) hold
for all n ≥ 0.

For each ν ∈ Zd
∗ we have to exclude all values λ0 ∈ �∗

0 such that |ω · ν +
2λ0| ≤ C1γn(ν). If we consider λ0 as a function of an auxiliary parameter t ∈
[−1, 1], we can write

ω · ν + 2λ0(t) = tC1γn(ν), t ∈ [−1, 1], (6.1)

so that

dλ0

dt
= C1

2
γn(ν). (6.2)

Then for each ν ∈ Zd
∗ we have to exclude all values of t in [−1, 1].

Lemma 23. There exists ε0 > 0 and σ > 0 such that for all |ε| < ε0 the Lebesgue
measure of the set �0 \ �∗

0 is bounded proportionally to |ε|σ .

Proof. The set �∗
0 is obtained by imposing the Diophantine conditions (4.14). Then

we can bound

meas(�∗
0) =

∫

�∗
0

dλ0 =
∑

ν∈Zd∗

∫ 1

−1
dt

dλ0

dt
=

∑

ν∈Zd∗

C1γn(ν), (6.3)
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where we can write

∑

ν∈Zd∗

γn(ν) =
∞∑

n=0

∑

2n−1<|ν|≤2n

γn ≤ const.
∞∑

n=0

2n(d−1)γn ≤ const. (6.4)

By inserting (6.4) into (6.3) we obtain meas(�∗
0) ≤ const.C1, hence �∗

0 is a set of
measure proportional to C1.

By Lemma 20 we can take C1 = |ε|σ , with 0 < σ < 1. Hence the measure
of the discarded set can be bounded proportionally to |ε|σ .

In the following write u(t, λ0), µ(λ0) and M[≤n]
j (x, λ0) to make explicit the

dependence of u(t), µ and M[≤n]
j (x) on λ0. We refer to refs. 7, 35 for the notion

of Whitney differentiability and Whitney extension.

Lemma 24. Assume λ0, λ
′
0 ∈ �∗

0. One has
∣∣M[≤n]

j (x, λ′
0) − M[≤n]

j (x, λ0) − ∂λ0M
[≤n]
j (x, λ0)

∣∣ = o
(
ε2C−2

1 |λ′
0 − λ0|

)
,

∣∣∂λ0

(
M[≤n]

j (x, λ0) − M[0]
j (x, λ0)

)∣∣ ≤ A1|ε|2C−2
1 , (6.5)

for a suitable constant A1. In particular M[≤n]
j (x, λ0) can be extended in all �0 to

a differentiable function (Whitney extension), whose derivative satisfies the bound
in (6.5).

Proof. The proof is by induction. M[≤n]
j (x, λ0) can be written according to (4.7).

Hence it depends recursively on M[≤n′]
j ′ (x), n′ < n, through the propagators, and

one can express ∂λ0M
[≤n]
j (x, λ0) as sum of derivatives of self-energy values,

∂λ0VT (x) = εkT
∑

�∈P(T )

∂λ0 gR
�

(
∏

�′∈L(T )\�
gR

�′

)(
∏

v∈P(T )

Fv

)
. (6.6)

For n = 0 the assertion is trivially satisfied, as g[0]
j (x) = −i(x +

2M[0]
j (x, λ0))−1, with M[0]

1 (x, λ0)) = 0 and M[0]
2 (x, λ0)) = λ0. Then for all

λ0 ∈ �∗
0 one has ∂λ0 g[0]

1 (x, λ0) = 0 and ∂λ0 g[0]
2 (x, λ0) = −2i(x + 2λ0)−2, and one

can consider the Whitney extension of M[0]
j (x, λ0)) in all �0.

For n ≥ 1 assume that all M[≤n′]
j ′ (x, λ0), n′ < n, can be extended to differen-

tiable functions in �0 and satisfy the bounds in (6.5). Then the derivative ∂λ0 gR
� ,

in (6.6), can be bounded because of the inductive hypothesis. Simply, one reasons
as in the proof of Lemma 19, and (6.5) follows.

The Whitney differentiability of M[≤n]
j (x, λ0) implies also that of u(t, λ0)

and µ(λ0). Hence the following result follows immediately from Lemma 24.
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Lemma 25. The renormalised series for u(t) and µ converge to functions which
are differentiable in the sense of Whitney in �∗

0.

Now, we can conclude the proof of Theorem 1.

Lemma 26. Call �∗ the subset of [a, b] for which the system (2.19) is reducible.
There exists ε0 > 0 such that for all |ε| < ε0 the Lebesgue measure of the set
[a, b] \ �∗ is bounded proportionally to |ε|σ , with σ as in Lemma 23.

Proof. Write λ0 + µ = λ. We want to fix the set �0 so that for λ0 ∈ �∗
0 ⊂ �0 one

has λ ∈ � := [a, b]. Write �0 = [a0, b0], with a0 = a − ε f11,0 + Aε2C−1
1 and

b0 = b − ε f11,0 − Aε2C−1
1 , where A is a constant such that for all λ0 ∈ �∗

0 and
all |ε| < ε0 one has |µ − ε f11,0| < Aε2C−1

1 (this is possible by Lemma 20). Then
meas(�0) = meas(�) − 2Aε2C−1

1 , whereas meas(�∗
0) = meas(�0) − O(|ε|σ ) by

Lemma 23. Call �∗ the subset of values λ ∈ � such that λ = λ0 + µ, for λ ∈ �∗
0

and µ = µ(λ0). By construction �∗ ⊂ �.
By Lemma 25 the function λ0 → µ(λ0) is differentiable in the sense of

Whitney, so that

dλ

dλ0
= d

dλ0
(λ0 + µ) = 1 + dµ

dλ0
,

∣∣∣∣
dµ

dλ0

∣∣∣∣ ≤ const.|ε|2C−1
1 , (6.7)

where we explicitly used that the first contribution to µ depending on λ0 has size
O(ε2C−1

1 ).
Therefore

meas(�\�∗) =
∫

�\�∗
dλ ≤ −2Aε2 +

∫

�0\�∗
0

dλ0

∣∣∣∣
dλ

dλ0

∣∣∣∣ ≤ const.|ε|σ , (6.8)

because meas(�0\�∗
0) = O(|ε|σ ) by Lemma 23, and the assertion is proved.

So far we assumed 0 /∈ [a, b]. If 0 ∈ [a, b] we can discard a subset �1 ⊂
[a, b] around the origin, of measure O(|ε|σ ), such that for all λ ∈ [a, b] \ �1 one
has |λ| > const.|ε|σ . Then |λ0| is bounded below proportionally to |ε|σ , because
|λ − λ0| = |µ| = O(|ε|) and σ < 1. Though, this does not modify the bounds of
the previous sections. Indeed the only difference is that also the propagators with
vanishing momentum (that is on scale −1) are bounded proportionally to |ε|−σ

– like those with non-zero momentum ν�, which are bounded proportionally to
|ε|−σ γ −1

n(ν�) – and the bounds were obtained by using that one has at worst a factor
|ε|−σ per line. Then one can restrict the analysis to [a, b] \ �1, and the same
conclusions hold.
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